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Feedback session Instructed session 

Fig. 1. Experimental design. In feedback session, the number 5 and a spe 
cific visual cue were displayed on the screen. In the instructed session, ad 
ditional probability information was displayed on top of the visual cue. 

likelihood estimation. Different prominent RL models were fit 
ted to the participants' behavioral data to determine the optimal 

model. We considered popular models: a RL model with a single 
learning rate for both positive and negative prediction errors 

(PEs) (8+ and 5_), and a RL model with different learning rates 
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Fig. 3. BOLD responses for prediction errors in both sessions. (A) Activity of the striatum showed significant correlation to the PE signal in the feedback 
session (P < 0.05, corrected). Such correlations were not observed in the above structures in the instructed session (P < 0.01, uncorrected). (B) A two-way 
ANOVA showed an interaction between session (feedback and instructed) and learning phase (early and late) in the left striatum. (C) Striatal activation 
identified in the PE (A, yellow) and session x learning phase interaction (B, green) analyses, and the overlapping region (red). (D) BOLD response patterns in 
the overlapping region for the early and late phases of learning in the feedback and instructed sessions (*, time points with significantly different BOLD 

responses between early and late learning phases, P < 0.05; ? SEM). 

u 
o 

Q > 

(Fig. 3D, Left). However, this characteristic PE response pattern 
was absent in the instructed session (Fig. 3D, Right). 
Reduced BOLD responses to outcomes in the instructed session. In 

spired by the results that participants' choices are differentially 
influenced by previous trial outcomes (Fig. IB), we examined 
participants' BOLD responses when participants processed 
monetary outcome (win or loss) in both sessions. From a general 
contrast of win over loss at the onset of outcome revelation 
across both sessions, we found significant activation in the nu 

cleus accumbens (NAc) [peak MNI coordinate (-2 12 -10), z = 

6.12] and vmPFC [peak MNI coordinate (-4 42 -10), z = 5.94; 
P < 0.05 corrected] (Fig. 44), regions previously linked to the 
brain's reward valuation system (25, 29-34) (SI Appendix, Table 
S3). In addition, we observed bilateral activation in the hippo 
campal complex [peak MNI coordinates (-18 -18 -20), z = 4.31 
and (28 -18 -20), z = 3.61], which was centered on the peri 
rhinal cortex, a region that has been implicated in processing 
item-reward associations (35-37) (Fig. 44). Similar outcome 
related activation patterns were also observed by including the 
prediction error regressor in the GLM. 

ROI analyses of these brain regions showed that overall 
BOLD responses to outcomes (win minus loss) were smaller in 
the instructed session than the feedback session. Examining win 
and loss trials independently revealed diminished activation to 
monetary gains in the instructed session in all three regions (P < 
0.05 at the peaks of activation). Although a similar pattern was 
observed for loss trails, no significant differences were observed 

for loss evoked responses between the two sessions, perhaps 
because of the diminished statistical power resulting from fewer 
overall loss trials (Fig. 4B). 
Higher dorsolateral prefrontal cortex activity paralleled better per 
formance in the instructed session. RL model fitting of the behav 

ioral data suggested that participants were less influenced by 
monetary outcomes in the instructed session, most likely because 

of the strong a priori instructed knowledge of the cue-reward 

probabilities. Accordingly, participants achieved better perfor 
mance in the instructed session. This reliance on instructed 

knowledge reduced BOLD responses in regions implicated in 
reward learning, suggesting that instructed knowledge enables 
the brain to diminish the impact of outcome feedback on de 
cision making. If this process is the case, there should also be 
a corresponding increase in activation in brain regions that me 

diate the implementation of instructed knowledge. To determine 
which brain regions may enable the effects of instructed knowl 
edge on trial-and-error reward learning tasks, we conducted an 

exploratory analysis to locate brain areas where activation to 

monetary outcomes was greater in the instructed relative to 

feedback session. We focused on win trials because our previous 

analyses found significantly diminished BOLD responses to wins 
in reward learning (NAc and hippocampal complex) and valua 
tion (vmPFC) regions in the instructed session. This analysis 
revealed the left dorsolateral prefrontal cortex (DLPFC) [P < 
0.05 corrected, peak MNI coordinate: (-48 24 33), z = 3.98] 
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Fig. 4. BOLD responses discriminating win and loss for both sessions. (A) A whole-brain analysis revealed greater activation in the NAc, vmPFC, and bilateral 

hippocampal complex for win than loss trials across both sessions (P < 0.05, corrected). (B) BOLD time course of activation in the NAc, vmPFC, and bilateral 

hippocampal complex for win and loss trials in the feedback and instructed sessions (*, significant difference of time points near activation peaks, P< 0.05; ? SEM). 

showed a greater BOLD response to win outcomes during the 
instructed session (Fig. 5A and SI Appendix, Table S5). 
Functional connectivity between DLPFC and reward-related brain 

structures. The DLPFC has previously been implicated in decision 
making and emotion regulation tasks that require the top-down 
modulation of valuation regions (25, 26, 34). To determine if the 
left DLPFC acted as a cognitive modulator of reward learning 
regions in the presence of instructed knowledge, we conducted 
a psychophysiological interaction (PPI) analysis using the peak 
voxels in the left DLPFC (Fig. 5A) as the seed region, and tested 
which brain areas showed significant functional connectivity in the 
win trials vs. loss trials. We found an inverse, win-trial specific 
functional connectivity between the DLPFC and the NAc [peak 

MNI coordinate (-3 6 -12), z 
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our model against others suggested in the literature based on behavioral 

data with similar tasks (27, 28) using the Bayesian information criterion as 
a criterion for model selection. For the feedback session, the simple RL with 
one learning rate (a) for both positive and negative prediction errors fits 

participants' behavior better. However, RL with different learning rates 

(oc+ and <x_) for positive and negative (8+ and 8_) PEs fits participants' choices 

the best in the instructed session (see SI Appendix for details). 

Imaging Analysis. We first regressed PEs that were generated for both the 

feedback and instructed sessions using the best-fitting parameters to the 

whole-brain BOLD signals at the revelation of monetary outcome to identify 
the brain areas whose activities were correlated with the calculation of PE. 

Monetary outcomes were also included as dummy regressors to account for 
the effect of the magnitude of the reward value. 

Repeated-measures two-way ANOVA was performed on the functional im 

aging data with two factors (session and learning phase) at the onset of feedback. 

The finite impulse response from time 0 to ~12 s (TRO to ~TR6) was generated by 

resampling the BOLD time series of each voxel in the brain and averaging across 40 

trials each for the early and late learning phases in both sessions. Because ca 

nonical hemodynamic response function typically peaks at 6 to ~8 s after the 

stimulus onset, the two-way ANOVA was performed on both TR3 (6 s) and TR4 

(8 s). These whole-brain analyses were performed on each voxel to identify brain 

regions that showed a significant interaction effect with time (i.e., early vs. late 

learning) and session (i.e., feedback vs. instructed session). 

Finally, we conducted a PPI analysis to investigate the connectivity be 

tween brain regions that may modulate the impact of instructed knowledge 
on RL learning signals (see SI Appendix for technical details). 
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